Title: | Random Forest Two-Sample Tests |
---|---|
Description: | An implementation of Random Forest-based two-sample tests as introduced in Hediger & Michel & Naef (2022). |
Authors: | Simon Hediger [aut, cre], Loris Michel [aut], Jeffrey Naef [aut] |
Maintainer: | Simon Hediger <[email protected]> |
License: | GPL-3 |
Version: | 1.0.1 |
Built: | 2024-11-23 03:01:37 UTC |
Source: | https://github.com/cran/hypoRF |
Performs a permutation two sample test based on the out-of-bag-error of random forest.
hypoRF( data1, data2, K = 100, statistic = "PerClassOOB", normalapprox = F, seed = NULL, alpha = 0.05, ... )
hypoRF( data1, data2, K = 100, statistic = "PerClassOOB", normalapprox = F, seed = NULL, alpha = 0.05, ... )
data1 |
An object of type "data.frame". The first sample. |
data2 |
An object of type "data.frame". The second sample. |
K |
A numeric value specifying the number of times the created label is permuted. For K = 1 a binomial test is carried out. The Default is K = 100. |
statistic |
A character value specifying the statistic for permutation testing. Two options available
. Default is statistic = "PerClassOOB". |
normalapprox |
A logical value asking for the use of a normal approximation. Default is normalapprox = FALSE. |
seed |
A numeric value for reproducibility. |
alpha |
The level of the test. Default is alpha = 0.05. |
... |
Arguments to be passed to ranger |
A list with elements
pvalue:
The p-value of the test.
obs:
The OOB-statistic in case of K>1 or the out-of-sample error in case of K=1 (binomial test).
val:
The OOB-statistic of the permuted random forests in case of K>1 (otherwise NULL).
varest:
The estimated variance of the permuted random forest OOB-statistic in case of K>1 (otherwise NULL).
statistic:
The used OOB-statistic
importance_ranking:
The variable importance measure, when importance == "impurity".
cutoff:
The quantile of the importance distribution at level alpha.
call:
Call to the function.
# Using the default testing procedure (permutation test) x1 <- data.frame(x=stats::rt(50, df=1.5)) x2 <- data.frame(x=stats::rnorm(50)) hypoRF(x1, x2, num.trees = 50) # Using the exact binomial test hypoRF(x1, x2, K=1)
# Using the default testing procedure (permutation test) x1 <- data.frame(x=stats::rt(50, df=1.5)) x2 <- data.frame(x=stats::rnorm(50)) hypoRF(x1, x2, num.trees = 50) # Using the exact binomial test hypoRF(x1, x2, K=1)